Monthly Archives: February 2017

QuantIC’s Professor Daniele Faccio joins HRH The Duke of Cambridge, BBC Presenter Kirsty Wark and Chief Scientific Advisor to HM government, Sir Mark Walport as one of 60 distinguished individuals elected to be Fellows of the Royal Society of Edinburgh (RSE).

Daniele Faccio
Daniele Faccio

The RSE is a leading educational charity which operates on an independent and non-party-political basis to provide public benefit throughout Scotland. Established by Royal Charter in 1783, the work of Scotland’s National Academy includes awarding research funding, leading on major inquiries, informing public policy and delivery events across Scotland to inspire knowledge and learning. There are around 1600 Fellows from a wide range of disciplines, including the arts, business, science and technology and academia.

Professor Faccio, who is part of the Institute of Photonics and Quantum Sciences at Heriot-Watt University said, “I’m extremely honoured to have been elected Fellow of the Royal Society of Edinburgh and look forward to engaging with my new colleagues and being part of such a prestigious and important academy”.  He was also recently awarded the prestigious Philip Leverhulme Prize to further research in the field of photonics and technologies related to light. His work in QuantIC focuses on the Hidden Object Tracker, a camera system which can detect images around a corner or behind a wall.

For more information on the Hidden Object Tracker, click here.

QuantIC’s Principal Investigator and one of the University of Glasgow’s leading researchers has received a major award in recognition of his contribution to optical physics. Professor Miles Padgett, has been named as the recipient of this year’s Max Born Award from The Optical Society.

20151111_EPSRC_WebRes_0348

Founded in 1916, The Optical Society (OSA) is the leading professional association in optics and photonics, home to accomplished science, engineering, and business leaders from all over the world. The Max Born Award, which has been presented by the OSA since 1982, is named in honour of distinguished optical physicist Max Born and is presented to a person who has made outstanding contributions to physical optics, theoretical or experimental.

According to Professor Padgett’s official citation, the Optical Society chose to present him with the award in recognition of ‘contributions to optics and especially to optical momentum, including the optical spanner, the use of orbital angular momentum in communication systems, and an angular form of the Einstein-Podolsky-Rosen paradox.’

Professor Padgett said: “I’m pleased and proud to receive the 2017 Max Born award from The Optical Society. I’m joining a very distinguished group of researchers and I’m inspired to be in their company.

“As principal investigator for QuantIC, the UK’s quantum imaging technology hub, I’m also working with other talented researchers in academia and industry to bring innovative new imaging systems to market. It’s a very exciting time to be working in this field.”

New technology from QuantIC which could offer the oil and gas industry a cheaper way to visualise methane gas is taking one step closer to becoming commercially available. In a paper published in the journal Optics Express, researchers from QuantIC and Scottish photonics company M Squared Lasers describe how they have used a technique called single-pixel imaging to create real-time video images of methane gas in a typical atmospheric setting.

While gas imaging technology has been commercially available for some time, current systems are expensive, bulky and power-hungry. Single-pixel imaging uses just one light-sensitive pixel to build digital images instead of using conventional multi-pixel sensor arrays, which can be prohibitively expensive for infrared imaging. This allows the researchers to build a much smaller, cheaper gas detection system.

QuantIC's new gas imaging system which offers the potential of low-cost, real-time detection of methane gas leaks. The top row shows movie frames from a low-resolution (16x16) computational image of a gas leak, overlaid onto a high-resolution color image from a CMOS camera. Only the methane gas is detected (red), when 0.2 liters per minute of methane are delivered via the green tube and 2 liters per minute of nitrogen are delivered from the red tube. The bottom row shows movie frames where a methane gas sample cell is moved by hand across the field-of-view. Credit: Graham M. Gibson, University of Glasgow
QuantIC’s new gas imaging system which offers the potential of low-cost, real-time detection of methane gas leaks. The top row shows movie frames from a low-resolution (16×16) computational image of a gas leak, overlaid onto a high-resolution color image from a CMOS camera. Only the methane gas is detected (red), when 0.2 liters per minute of methane are delivered via the green tube and 2 liters per minute of nitrogen are delivered from the red tube. The bottom row shows movie frames where a methane gas sample cell is moved by hand across the field-of-view. Credit: Graham M. Gibson, University of Glasgow

The scene in front of the sensor is illuminated using a sequence of infrared patterns created using a laser tuned to 1.65μm, the absorption wavelength of methane, and display technology commonly found in digital data projectors. Using sophisticated sampling techniques to correlate the projected patterns and the gas, the researchers can create a real-time, coloured coded, image of the gas overlaid on an image of the scene using a conventional colour camera.

The collaboration between QuantIC’s researchers at the University of Glasgow and M Squared Lasers aims to bring a range of new sensing technologies into the market. The global gas sensing market was estimated at $1.78 billion in 2013 and is expected to be worth $2.32 billion by 2018, offering an attractive opportunity for new technology.

University of Glasgow’s Dr Graham Gibson, lead author of the paper, said: “Our detector allows us to produce images which refresh 25 times a second, equivalent to the standard frame rate of video, which provides a highly accurate real-time picture of the scene in front of the detector. Working with M Squared Lasers, with the support of QuantIC, has been of immense benefit to the project. M Squared’s advanced laser systems allowed us to effectively ‘tune in’ to the wavelength of methane gas, and opens up the possibility of using the system to detect other types of gases in the future.”

Nils Hempler, head of M Squared Lasers’ innovation business unit, said: “Close collaboration with QuantIC has helped M Squared to identify and create lower cost, compact, greatly improved imaging solutions that are suitable for a range of industries.We’re keen to continue our collaboration to bring this project to market and to build on this foundation to create single-pixel sensors capable of detecting a wide range of other sources.”

The team’s paper, titled ‘Real-time imaging of methane gas leaks using a single-pixel camera’, is published in Optics Express and is available here.

QuantIC took another step towards increasing its international and industry profile by exhibiting for the first time at Photonics West 2017.

Photonics West Blog

As part of the exhibit, QuantIC brought along a prototype of the Gas Sight Camera which is collaboration between the Hub and M Squared Lasers and combines state of the art laser systems with single-pixel infrared cameras based on the same technology found in a data projector.

Dr Matthew Edgar, was one of QuantIC’s researchers who was representing QuantIC at the event. He said, “Photonics West 2017 has to be one of the biggest exhibitions on the planet for cutting edge Physics and in particular Optics research. Our stall on the Scottish section has been attracting hundreds of visitors and gaining lots of attention from companies who want to commercialise quantum imaging technologies. We are very lucky to promote such incredible science which is emerging from the Hub.”

QuantIC’s Gas Sight Camera was also “entangled” at Photonics West as industry partner M Squared Lasers also brought along a prototype to highlight as one of its new technologies and industrial collaboration. QuantIC Photonics West 2The Hub is now looking to exhibit at Laser World of Photonics in Munich in June.

More information on Gas Sight is available here.