

1. Expressions and Simple Statements

Evaluating and creating expressions
and simple statements
This section enables you to become familiar with talking about, recognising and interpreting
expressions and simple statements, as well as writing them to meet a given specification.
Imagine trying to read or write a book, but not being fluent with phrases and sentences - it
would be impossible. It’s the same here - you need to become fluent at the phrase/sentence
level of the programming language, before working on larger programs.

Do your working and write your answers on separate paper - then you can use this
again to practise in a few days time.

Section 1 - Describing lines of code - inc. variables,
expressions, while/for, lists
In this section, you are asked to write down an explanation for each line in a short program.
This checks whether you have the right language to talk about programs, which will help you
immeasurably when you are thinking about your programs, and when you are talking to
others about them.

1.1. For each line in the following program, write down on your own paper what it is
called, and exactly what it will do as it is executed. Use the correct terminology for the
components you refer to in the line. An explanation of the first line is given, as an example.
Do not try to execute the whole program - we’ll do that later.

i. a = 100

Assignment statement. The variable a is assigned the integer value 100.

ii. b = [1, 6, 4, 8, 3, 4, 7, 9]
iii. le = len(b)

iv. for i in range(le):
v. print(a, end = " ")

vi. a = a - b[i]
vii. print(a)

1.2. Similar complexity to previous - using strings this time:

i. b = "A string that I just created."
ii. le = len(b) // 2

iii. for i in range(le):
iv. print(b[i], end = " ")

v. print(b[-1 -i])

1

1. Expressions and Simple Statements

1.3. Same again, also with strings:

i. inputString = input("Please enter string:")

ii. newString = ""

iii. index = len(inputString)

iv. while index > 0:

v. index -= 1

vi. newString += inputString[index]

vii. print(newString)

1.4. And again - more complex this time:

i. b = [3, 6, 10, 7, 19, 24, 20, 31, 38, 44]

ii. u = b[0] < b[1]

iii. p = b[1]

iv. for i in range(2, len(b)):

v. if u and p > b[i]:

vi. print("x" + str(i-1), end = " ")

vii. u = not u

viii. elif not u and p < b[i]:

ix. print("y" + str(i-1), end = " ")

x. u = not u

xi. p = b[i]

2

1. Expressions and Simple Statements

Section 2: Evaluating expressions
2.1. Write down precisely what would be output when each of the following fragments of
Python code is executed. If you think that any code fragment would result in an error, explain
clearly the cause of the error.

You may assume the code immediately below, to declare variables, has been executed.

a=7

b=10

c=3

x = ["D", "E", "F", "G", "H"]

n = { “fred” : 23, “bob” : 100 }

s = "computing"

i. print(a + b * c)

ii. print(x[1:2] + "end")

iii. print(a > 6 OR b - c < 7)

iv. print(a // 3)

v. print(3 % 7)

vi. print(s[2:4] > "mo")

vii. print(n[fred] * 2)

2.2.
Same guidance as for Q1.

a=5

b=14

c=2

x = [10, 3, 7, 2, 8, 12]

y = { “fred” : 23, “bob” : 100 }

s = "large"

i. print(5 % 2 + 14 // 5)

ii. print(x[2:4])

iii. print(a < 4 OR 7 < a + c)

iv. print(x[4] / 2)

3

1. Expressions and Simple Statements

v. print(y["fred"] + s)

vi. print("fred" > s)

vii. print(a + b // c - x[y["bob"] - 97] - len(s))

2.3. Write down precisely what would be output when each of the following fragments of
Python code is executed.

i. print (int(1977 + 1.1))

ii. print (float(1980 + int(4.21)))

iii. print (len(str(float(1.977))))

iv. print ((len("TK")+4+2+int("1"))/2)

v. print (int(float(1983)*1.0))

vi. print (float(len("falcon"))*len("94"))

vii. print (str(1977)[3]*len(str(1980)))

viii. print (float(str(1977)[3])*len(str(80)))

ix. print (max("1977") * 3)

2.4. Evaluate the following expressions:

i. "darkside" < "lightside"

ii. True != True

iii. True != False and True

iv. 4 < 10 or 1 < 2

v. False or (1 < 2 and 4 > 2)

4

1. Expressions and Simple Statements

Section 3: Writing expressions or statements
Write an expression or a statement to satisfy each of the following:

3.1 Given a string named s , and an integer n which is one of the indices of s , write an
expression that returns a string the same as s but with the character at position n removed.
E.g. if s is "hello" and n is 1 , then "hllo" should be the value of the expression.

3.2 Write the correct range expression to give the numbers from 1 to 100.

3.3 Write the correct range expression to give all the indices of an array a , such as you
might use in a for loop to access all elements of the array.

3.4 Given a string s of unknown length, write out the individual characters:

i. Each on a separate line

ii. On a single line, but with each character separated by a single space character

3.5 Write a Boolean expression to determine whether the integer variable v holds a value
that could safely index a value in list li .

3.6 Write an expression to create a list containing 20 elements, all 0. Make it as short as
you can.

3.7 Write string expressions working on the string s to:

i. Extract the last character of s .
ii. Extract the substring consisting of the last two characters of s .

iii. Create a new string with the middle character of s removed. If the length of s is
even, so there is no middle character, take out the character just to the right of the
middle.

iv. Create a new string consisting of the first and last characters of s only.

v. Create a new string without the last character of s .

5

1. Expressions and Simple Statements

3.8 Assuming you have an integer list referred to by a variable named lis , write statements
as directed. Each answer may require more than one statement. You can assume the list
has at least 5 elements.

i. Write an assignment statement to add 1 to the last element of lis .

ii. Write statements to add up the values of all the list elements in list lis after the first
one, and then add this value to the value in the first element.

iii. Update lis to refer to a list containing all but the last value in the original list.

iv. Update lis to refer to a list containing only the first two, and the last two, elements
of the list it is currently referring to.

6

1. Expressions and Simple Statements

Section 4 - Doing all of the same but adding in dictionaries and
files

4.1. Back to explaining what lines of code mean - write a line for each numbered line of
code below - what kind of statement is each of these lines, and what does the line do?

Assume that someData.txt is a text file

i. myFile = open("someData.txt")

ii. lines = myFile.readlines()

iii. for i in range(len(lines)):

iv. print(str(i + 1), end = " ")

v. print(lines[i])

4.2. And another example:

Assume file someData.txt containing comma-separated values

i. myFile = open("someData.txt")

ii. lines = myFile.readlines()

iii.

iv. for line in lines:

v. line = line[:-1] # Explain WHY this line is being used

vi. items = line.split(",")

vii. for piece in items:

viii. print(piece, end = " ")

ix. print("")

4.3. Now something more like a database file. Assume that the people.txt file contains
lines containing a string and an integer, representing a name and an age, separated by a
comma:

i. peopleFile = open("people.txt")

ii. fileLines = peopleFile.readlines()

iii. peopleTable = []

iv. for fullLine in fileLines:

v. personData = (fullLine[:-1]).split(",")

vi. newPerson = { "name": personData[0],

vii. "age" : int(personData[1]) }

viii. peopleTable = peopleTable + [newPerson]

7

1. Expressions and Simple Statements

ix. for p in peopleTable:

x. if p["age"] >= 17:

xi. print(p["name"])

4.4. Write an expression or statement to satisfy each of the following

i. You have a list of dictionaries, dictList. Write code to retrieve the value stored with
the key “Quintin” of the dictionary that is stored at index 7 of the list.

ii. Add a new dictionary to the end of the list above, which contains only one entry -
associating key “Jeremy” to the integer value 128.

iii. A file has been opened and assigned to variable myFile. Write code to print out all
the lines in the file to the screen

iv. Variable d holds a dictionary. Each entry in the dictionary has a string key associated
with a list of integers. Write code to extend or add an entry with the key “CS” - if the
entry already exists, then add the value 7 to the end of the associated list - if the
entry does not exist, create it with a new list containing just the value 7.

8

